On default priors and approximate location models

نویسندگان

  • D. A. S. Fraser
  • N. Reid
چکیده

A prior for statistical inference can be one of three basic types: a mathematical prior originally proposed in Bayes [Philos. Trans. R. Soc. Lond. 53 (1763) 370–418; 54 (1764) 269–325], a subjective prior presenting an opinion, or a truly objective prior based on an identified frequency reference. In this note we consider a method for deriving a mathematical prior based on approximate location models. This produces a mathematical posterior, and any practical interpretation of such a posterior is in terms of exact or approximate confidence under the postulated model. We describe how a proposed prior can be simply checked for consistency with confidence methods, using expansions about the maximum likelihood estimator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Default priors for density estimation with mixture models

The infinite mixture of normals model has become a popular method for density estimation problems. This paper proposes an alternative hierarchical model that leads to hyperparameters that can be interpreted as the location, scale and smoothness of the density. The priors on other parts of the model have little effect on the density estimates and can be given default choices. Automatic Bayesian ...

متن کامل

Default Bayesian model determination methods for generalised linear mixed models

A default strategy for fully Bayesian model determination for GLMMs is considered which addresses the two key issues of default prior specification and computation. In particular, the concept of unit information priors is extended to the parameters of a GLMM. A combination of MCMC and Laplace approximations is used to compute approximations to the posterior model probabilities to find a subset ...

متن کامل

Fuzzy Hierarchical Location-Allocation Models for Congested Systems

There exist various service systems that have hierarchical structure. In hierarchical service networks, facilities at different levels provide different types of services. For example, in health care systems, general centers provide low-level services such as primary health care services, while the specialized hospitals provide high-level services. Because of demand congestion in service networ...

متن کامل

Model weights and the foundations of multimodel inference.

Statistical thinking in wildlife biology and ecology has been profoundly influenced by the introduction of AIC (Akaike's information criterion) as a tool for model selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm as a broader framework for multimodel inference, one in which model averaging and model selection are naturally linked, and in which the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011